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A Lagrangian representation of bounded incompressible flow is introduced in
which viscous boundary conditions are given kinematic expression by the genera-
tion of impulse at the wall. The relationship between such a process and the boundary
conditions is deduced from two complementary Hodge decompositions. The orien-
tation of the created impulse vector may be chosen to be parallel at the wall (this
being equivalent to a thin vortex doublet sheet) or normal at the wall (this being
a thin monopole vortex sheet). Although the representation is developed here for
two dimensions, it can be generalized in a natural way to three dimensions. The
case of tangentially oriented wall impulse is applied to flow over a semi-infinite
plate; the case of normally oriented wall impulse is applied to flow past a circular
cylinder. c© 2000 Academic Press
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1. INTRODUCTION

The problem of modeling slightly viscous flow over a solid boundary,∂D, may be
formulated in terms of vorticity transport (expressed here for two dimensions),

Dξ

Dt
= 1

Re
1ξ (1)

where D/Dt is the material derivative,Re is Reynolds number, and1 is the Laplacian
operator. The vorticity field,ξ, is defined as the curl of the velocity fieldu, namelyξ=∇ ×u.
We consider the flow to be incompressible (∇ · u= 0). The solution to (1) would require
boundary conditions forξ on∂D; there is no unique expression for this to be derived from the
velocity conditionu = 0 on∂D. On the other hand one may try to understand the vorticity
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boundary condition in terms of a physical process. A family of Lagrangian numerical
methods (e.g., see [7]) has been developed in which one of the boundary conditions to be
satisfied byu at a wall (this is namely the no-slip condition) is represented in terms of
vorticity creation there. This is to give algorithmic expression to an idea which has been
proposed a number of times in earlier literature (e.g., see [19, 25], or see Stokes’ letter in
[32, Sect. 643]). The flow which evolves from this creation principle is typically represented
in terms of the kinematics of an ensemble of point vortex elements whose singularity is
ameliorated by a smoothing strategy.

The robustness of vortex methods in two dimensions derives from the Hamiltonian nature
of the underlying Euler flow problem. Unfortunately this Hamiltonian property does not
generalize in a simple way to corresponding point vortex elements in three dimensions. The
dilemma of generalizing a Lagrangian representation of a continuum vorticity field from
two into three dimensions can be understood as one of finding a consistent relationship
between a vorticity field which is macroscopic and extensive, and a Lagrangian “particle”
of compact support. In two dimensions geometrical symmetry resolves the problem for us:
vorticity extends in directions perpendicular to the plane of flow so a representation of the
continuum field in terms of point vortices is consistent with the extensive character of the
field. It is precisely this which is lost in a generalization to three dimensions where one
expects (by virtue of the solenoidality ofξ) the lines of equivorticity to extend throughout
the fluid in macroscopic closed filaments. There is a particular difficulty when we come
to reconcile such a global, solenoidal vorticity field to its creation at a wall in response to
viscous boundary conditions—conditions which express the macroscopic effect of local,
molecular processes.

These facts motivate an alternative representation of flow in terms of fluid impulse density,
which is to say in terms of a vector field of compact support. This formulation of the Euler
problem leads to Lagrangian representations which are Hamiltonian in three dimensions (see
[5, 6]). Furthermore, problems characterized by slight viscosity can be cast as a dissipative
perturbation of the Hamiltonian dynamics (see [30, 31]).

In the present note we develop, in two dimensions, a representation of viscous boundary
conditions in terms of the creation of impulse at the wall. In contrast to standard vortex
methods, this representation generalizes naturally into three dimensions.

The velocity wall conditionu= 0 may be expressed in terms of a wall impulse which
is oriented parallel to the boundary, or alternatively, it may be oriented normally to the
boundary. The former case we can associate with the creation of a vortex doublet sheet,
the latter with the creation of a vortex (monopole) sheet. We illustrate these two cases
numerically in Sections 6 and 7.

2. EQUATIONS OF MOTION

We define impulse density,m, through the relationship

u = m+∇φ, (2)

whereu is the divergence-free velocity field, and where we understandφ to be a scalar
function and∇φ, being curl-free, is an irrotational field. In the literature a variety of nomen-
clatures is attached tom: “vortex momentum density” [17], “velicity” [5], “magnetization
variable” [6], and “impetus variable” [20].
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Implicit to Eq. (2) is the general property of Hodge decomposition [27]: any vector (m) can
be decomposed into the sum of two vectors, one of which is divergence-free (u), and other
curl-free (∇φ). It is in this particular sense that we will refer to (2) as a “decomposition ofm.”
The expression (2) also resembles a Helmholtz decomposition of velocity into irrotational
and non-irrotational parts. It is important to note that we do not imply by this thatm is
divergence-free: although the variablem has the physical dimensionality of velocity, it is
more usefully understood as an impulse density.

The field m is of compact support: it is this property which implies it is an impulse
“density,” since in this case it is formally related to fluid impulse,I , through

I =
∫ ∫ ∫

V
m dV

[5, 6, 10, 26]. Vorticity is related tom throughξ=∇ ×m. An equation of motion can be
determined [23, 5, 6, 9, 10] form in the case of an incompressible viscous fluid by substi-
tutingu from (2) into the non-dimensionalized Navier–Stokes equation. Upon substitution
we find

Dm
Dt
+ (∇u)Tm− 1

Re
1m = ∇

(
Dφ

Dt
+ 1

2
u · u− p− 1

Re
1φ

)
= ∇3

(where thei j element of the matrix (∇u)T is ∂u j /∂xi and p is pressure). Upon choice of
gauge3 = 0 we determine two consistent equations. We determine

Dm
Dt
= −(∇u)Tm+ 1

Re
1m (3)

and note that this equation of motion does not involveφ.
We also determine the equation

Dφ

Dt
= −1

2
|u|2+ p+ 1

Re
1φ, (4)

which is a transport equation forφ in which pressure,p, appears explicitly; the variable
m does not appear however. This separation of the Navier–Stokes equation into Eqs. (3)
and (4) is obviously not unique, but follows upon the particular choice of gauge,3= 0.
Smereka and Russo [26] describe this choice as the “geometric gauge.” It is the most widely
studied case (e.g., [5, 6, 10]), and its geometric properties suggest it is the most appropriate
gauge for Lagrangian models of flow. (In the case of Euler flow, the oriented surface to be
associated withm is “frozen into” the fluid [26].) In any case, choice of gauge should not
affect the velocity solution to the Navier–Stokes problem.

Since we are interested in incompressible flow, and in applying boundary conditions at
fixed instants of time, we can apply the divergence operator to (2) and, if we note∇ ·u= 0,
we determine a more useful equation for our purpose: given, at an instant of timeto, a known
distribution of impulse in the flow denoted bym, the functionφ will satisfy the Poisson
equation

1φ = −∇ ·m. (5)

This Poisson problem is well posed if appropriate boundary conditions are specified for
φ. If a gradient condition is prescribed,φ is determinable only to an additive constant;
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however, we will use the fact that the field∇φ—and hence the decomposition (2)—is
uniquely determined in such a case.

3. TWO DECOMPOSITIONS AT THE BOUNDARY

3.1. Viscous boundary conditions at a solid wall.At a solid wall∂D with unit normal
n and unit tangential vectors, the wall conditionsu · n= 0 (impermeability) andu · s= 0
(no-slip) imply from (2) the union of conditions

m · n = −∂φ/∂n

m× n = −∂φ/∂s s

}
on ∂D. (6)

Thus if we are to solve (3) we will need to specify the gradients ofφ at ∂D. Two obvious
simplifications result if we choose, in turn, each of the gradients in (6) to vanish, i.e., if we
chooseφ so that on∂D

m · n = 0

m× n = −∂φ/∂s s

}
(7)

or alternatively

m · n = −∂φ/∂n

m× n = 0

}
. (8)

We note that the choice∂φ/∂s= 0 invoked in (8) implies, upon surface integration over
the boundary, a Dirichlet condition forφ. On the other hand,∂φ/∂n = 0 in (7) is a Neumann
condition. These two gradient conditions each determine a unique Hodge decomposition
of m at the wall. Conditions (7) imply an impulse densitym which is tangential at the wall;
conditions (8) imply an impulse density oriented normally at the wall. We denote the wall
impulse density associated with conditions (7) asmI and that with (8) asmII ; furthermore
we associate these with scalar functionsφI , andφII , respectively.

On the basis of the foregoing discussion, we can now construct two decompositions.
Given a distribution of impulse in the flow,m, we can, from Eq. (5), determine a function
φI satisfying the Poisson equation

1φI = −∇ ·m (9)

together with the boundary condition∂φI/∂n = 0 on ∂D. From this functionφI we can
determine an irrotational velocity fielduI such that

uI = ∇φI

which, by virtue of our particular choice ofφ satisfies the following conditions at the wall:

uI · n = 0 (10)

uI · s= −mI · s. (11)
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Similarly for theφII case we deduce from (5)

1φII = −∇ ·m

together with the boundary condition∂φII/∂s = 0 on ∂D. In this case we determine an
irrotational fielduII = ∇φII satisfying at the wall

uII · n = −mII · n (12)

uII · s= 0. (13)

At a fixed time and for a given distributionm in the flow, we can thus solve two well-
posed Poisson equations forφI andφII and hence determine two irrotational fieldsuI anduII

which at the wall are parallel to, and normal to∂D, respectively. These irrotational fields, by
construction, satisfy one of the two boundary conditions—impermeability (10) or no-slip
(13).

It remains to give meaning to the complementary boundary conditions (11) and (12).
These two conditions imply the existence of wall impulse vectorsmI andmII , respectively.
In each case, having solved for irrotational fieldsuI anduII , we are in a position to deduce—
from (11) and (12)—the magnitude and orientation ofmI andmII . This constitutes a strategy
for relating the viscous boundary conditionu= 0 to the imparting of impulse to the flow.

3.2. Heuristic interpretation ofmI andmII . AlthoughmI · son∂D can be determined
from the boundary conditions as we have described, no knowledge ofmI away from∂D
can be derived from these conditions. This implies we cannot construct the normal gradient
of mI exclusively from the boundary conditions, nor can we construct a wall vorticity. (For
example, ifmI is strictly tangential to a planar boundary∂D, we define wall vorticity there
as

ξ = ∇ ×mIs= −∂mI/∂n k

with k = n × s; but, as we explain, such a normal derivative cannot be inferred from the
boundary condition.) The conditionuI · s= −mI · s 6= 0 implies a sheet discontinuity in
tangential impulse at∂D, which we express as a horizontal “impulse sheet” of magnitude
mI . For example, in the case where there is no initial impulse in the flow (m= 0, andφI is
harmonic) the implication ofuI · s= −mI · s is that, confined to the surface∂D, there is
non-zero tangential impulse with the obvious implication that this must be a thin doublet
sheet.

The mII case invites a contrasting interpretation. The impulse densitymII serves as a
vector potential for tangential vorticity at the wall. Again, to take the case of a plane surface
we define

ξ = ∇ ×mII n = ∂mII/∂s k on ∂D.

Such a lateral derivative can be inferred from the boundary condition. Thus the creation
of a thin sheet of normal impulse at the wall is equivalently a sheet of wall vorticity. In
the two-dimensional context, we can understand this sheet of normally oriented impulse in
terms of a system of vortex pairs whose pair-axes are aligned parallel to the wall. This is
equivalent to a system of coplanar vortex monopoles.
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The decompositions proposed in Subsection 3.1 reflect two natural symmetries in the
boundary value problem. We infer from the present discussion that a solid wall in contact
with a viscous flow is a generating surface for impulse dipoles. We have described two
modes of generation, both of which are consistent with the wall conditionu= 0. We also
note that these can be superposed.

Taken in a Lagrangian sense, the consequences (to the evolution of interior flow) of this
superposition at the wall can be modeled by an ensemble ofmI andmII objects interacting
with each other (i.e., moving in each other’s induced velocity fields). The dimensional
implications of each decomposition (see Section 4) imply that this will reflect, at least in
part, an interaction between different scales in the flow. The notion that fluid flow can be
numerically modeled by a superposition of fields induced by vortex sheets and vortex-dipole
sheets was introduced (in the unbounded, inviscid setting of free shear layers) by Krasny
[16].

4. CONSIDERATIONS OF DIMENSIONAL SCALE

4.1. Bounded flow in two dimensions.In the x− y plane we consider a wall aty= 0
with y> 0 occupied by fluid;i and j represent unit vectors in thex and y directions,
respectively. By way of approximation, we shall conceive of a regime in the neighborhood
of the wall in which the impulse fieldm is constrained according to (7)—i.e., themI case;
or, alternatively, to (8)—i.e., themII case.

We could conceive of an array of vortex pairs and, consistent with a presumed thinness
of this doublet sheet, it can be subjected to the limiting procedure

M(x) = lim
d→0
0→∞

0d, (14)

where the bounded limitM(x) represents the tangential impulse per unit length of wall and
0 is the modulus of the circulation of each vortex in the pair;d is the dipole separation. By
way of determining the sign of vorticity, the pairs will be created in such a way that impulse
is oriented in the direction−uI(x, 0) · s. Figure 1 illustrates schematically the situation for
the case of uniform flow over a wall (the filled circles represent vortices of negative sign).

ThemII case follows in a similar manner: consistent withm×n= 0. We identify a normal
component of wall impulse to bemy(x, 0)=−uII · n, from which we can construct a wall
vorticity ξ(x, 0)= ∂my/∂x on ∂D.

The equivalence of this to a system of monopoles is illustrated in Fig. 2 and is formally
established by taking a center difference ofmy with respect tox. Except in the case of a
closed boundary, the endpoints are excluded from this differencing.

⊕

• m

⊕

• m

⊕

• m

⊕

• m

⊕

• m

⊕

• m

FIG. 1. Schematic distribution of vortex dipoles created over a surface in response to a uniform slip velocity
flowing from right to left.
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FIG. 2. Schematic distribution of vortex pairs in the case ofmII , impulse density increasing linearly asx.
This is equivalent to an array of monopoles of uniform orientation and strength.

Having constructedξ(x, 0) from my(x, 0), we can conceive of this wall vorticity as a
created thin vortex sheet with strength (or linear circulation density)κ(x) such that

κ(x) = lim
d→0

∫ d

0

∂

∂y
ux(x, y) dy. (15)

The creation procedure we introduce here formII , in itself, conserves global circulation
since vortexpairs are created. Once wall vorticity is created it is then subject to viscous
transport across the streamline∂D; it is this mechanism which evolves the circulation of
the flow. It is important to note that this change in circulation proceeds on a local, diffusive
scale (see the discussion in Subsection 5.2 of Batchelor [2]) and is not to be governed by
a non-local, elliptic operator such as that associated with a Poisson equation. (The three-
dimensional analogue of a “vortex pair” is a “vortex loop”: the implication of representing
the viscous boundary condition in terms of the creation of vortex loops is that, in three
dimensions, the created vorticity is naturally solenoidal.)

4.2. Dimensional scale formII . Consistent with our present discussion, we consider
a near-wall fluid regime of thicknessδ over a boundary aty= 0. The scale of the lateral
variable isx∼O(1); the normal length scale isy∼O(δ). These dimensional considerations
imply the following:∂ux/∂t ∼O(1); ux ∼O(1); ∂ux/∂x∼O(1). The continuity condition
∇ · u= 0 implies then that∂uy/∂y∼O(1), henceuy∼O(δ). Furthermore,∂p/∂x∼O(1)
and∂p/∂y∼O(δ). We can apply these dimensional considerations to the non-dimensional
Navier–Stokes equation, in Cartesian component form, to determine the Prandtl boundary
layer equations.

From this we can infer the dimensional scale of vorticity by observing that

ξ = ∂ux

∂y
− ∂uy

∂x

and deducing thatξ ∼ max(O( 1
δ
),O(δ))=O( 1

δ
). This applied to the non-dimensional

vorticity transport equation leads to the vorticity analogue of the Prandtl equation (see [7]),
namely

Dξ

Dt
= 1

Re

∂2ξ

∂y2
. (16)
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By the same token we can infer the dimensional scale of impulse density,m. From the
fact that∇ ×m= ξ, we infer

∂mx

∂y
− ∂my

∂x
∼ O

(
1

δ

)
.

Choosing the maximal dimensions for each term to determine dimensional consistency, we
determinemx ∼O(1); my∼O( 1

δ
).

4.3. Dimensional scale formI . We propose now a complementary dimensional model
to that of Prandtl. In this settingx∼O(ε), y∼O(1), ∂ux/∂t ∼O(ε); ∂ux/∂x∼O(1);
∂uy/∂y∼O(1), henceuy∼O(1). Furthermore,∂p/∂x∼O(ε) and ∂p/∂y∼O(1). Ap-
plied to the Navier–Stokes equation, an approximate evolution equation in primitive vari-
ables (specifically inuy) is determined. Similarly, the dimensional scale of vorticity can be
deduced from

ξ = ∂uy

∂x
− ∂ux

∂y
∼ max

(
O

(
1

ε

)
,O(ε)

)
.

The corresponding dimensional scale of impulse density is inferred (as before in subsec-
tion 3.1) from its relationship to vorticity; in this case we have

∂my

∂x
− ∂mx

∂y
∼ O

(
1

ε

)
.

Thus, following the same policy as before we deducemx ∼ O( 1
ε
) andmy ∼ O(1).

5. LAGRANGIAN REPRESENTATION

5.1. Thin sheet elements: ThemII case. At any given time-step we postulate the exis-
tence at the wall of a vortex sheet such that the wall vorticity isξ = ∂my/∂x. To achieve an
ensemble of Lagrangian elements of compact support the sheet is partitioned into elements
each of lengthl and centered at points (xo, yo). Consistent with a mid-point rule approxi-
mation of interior elements, we can consider each sheet element to have a constant vortex
sheet strengthκ. An approximation to the velocity field induced by such an element was
introduced by Chorin in [8], but in order to provide a unified treatment we pursue here an
alternative approach to approximating the velocity field of a vortex sheet, similar to that
employed by [15] and others. This is to specialize the Biot–Savart integral to the case of a
horizontal plane sheet element of uniform strength,κ, and lengthl centered at (xo, yo); we
have

u(x, y) = κ

2π

∫ l/2

−l/2

(yo − y,−(x′ + xo − x))

|r ′|2 dx′ (17)

with |r ′| = (x′ + xo − x)i+ (yo − y)j . The components of velocity,u = (ux, uy), can be
determined explicitly as

ux(x, y) = κ

2π

{
tan−1

(
xo − x + l/2

yo − y

)
− tan−1

(
xo − x − l/2

yo − y

)}
(18)

uy(x, y) = κ

2π
log

{
(xo − x − l/2)2+ (yo − y)2

(xo − x + l/2)2+ (yo − y)2

} 1
2

. (19)
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The tangential component is proportional to the angle subtended at(x, y) by a horizontal
sheet of lengthl centered at (xo, yo).

To confirm that such a monopole sheet element is related to an impulse vector oriented
normally to the sheet, we can specialize the definition of impulse,I , to the case of a thin
horizontal vortex sheet of lengthl centered at (xo, yo). In two dimensions impulse is defined
(see, for example, article 152 of [18]) as

I =
∫ ∫

A
r × ξ d A,

where we takeA to be an area adjacent to the wall containing the vortex sheet element.
This element is of compact support and occupies the linex ∈ (−l/2, l/2) on y = 0. We
take wall vorticity to beξ = −∂ux/∂y k there. If we consider this area to be a rectangle of
width l and heightd (i.e., an “overburden” of areald above the wall) we can determine the
impulse associated with this area as

I =
∫ d

0

∫ l/2

−l/2

{
−(y− yo)

∂ux

∂y
i + (x − xo)

∂ux

∂y
j
}

dx dy.

We reverse the order of integration and take into account the thin-sheet support ofξ by
taking the limitd→ 0 so that

I = −i
∫ l/2

−l/2

{
lim
d→0

∫ d

0
(y− yo)

∂ux

∂y
dy

}
dx+ j

∫ l/2

−l/2
(x − xo)

{
lim
d→0

∫ d

0

∂ux

∂y
dy

}
dx.

The inner integral of thei-component can be integrated by parts and, if we requireux at the
wall to be bounded—consistent with (18)—this integral vanishes in the limit. Invoking the
definition of a vortex sheet (15), we have simply

I = κ j
∫ l/2

−l/2
(x − xo) dx = −xolκ j ,

whereκ is the sheet strength (circulation per unit length of the sheet). This is the impulse
we associate with areaA; we divide by this area to obtain an impulse density:

m = myj = −xoκ

d
j . (20)

Thus the impulse density to be associated with a tangentially oriented vortex sheet embedded
in an area of fluid,A, is itself oriented normal to the sheet, as we would expect from
dimensional considerations. Differentiatingmy from (20) with respect tox0 we recover the
vorticity of the sheetξ =−κ/d.

5.2. Thin sheet elements: ThemI case. Following the discussion of subsection 4.1 we
introduce a thin dipole sheet which can be visualized as a doublet consisting of a vortex
sheet (S1) of uniform strengthκ separated by a uniform distanced from a vortex sheet (S2)
of strength−κ. To determine the velocity field induced by an element of a partitioned thin
dipole sheet, we propose to evaluate the field due to the doublet, then take a limitd→ 0 as
described by Eq. (14).
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We denote points onS1 asx′ = (x′, y′); hence points onS2 are expressed asx′′ = x′ − nd,
wheren is the unit normal to the double sheet atx′. The stream function atx = (x, y) for
this double sheet is

ψ(x) = − κ

2π

∫
S1

{ln |x′ − x| − ln |x′ − x− nd|} dx′.

Toward representing such a sheet by a sum of Lagrangian elements of compact support
we pursue a similar partitioning strategy to that introduced in the previous section. For the
horizontal component of velocity at positionx = (x, y) induced by a flat sheet aligned in
thex-direction, we have

ux(x, y) = ∂ψ

∂y
= κ

2π

∫
S1

{
y′ − y

|x′ − x|2 −
y′ − y− d

|x′ − x− nd|2
}

dx′.

Upon partition we consider a sheet element of lengthl centered atx′ = (0, yo), so that

ux(x, y) = κ

2π
(yo − y)

∫ l/2

−l/2

{
1

|x′ − x|2 −
1

|x′ − x− nd|2
}

dx′

+ κd

2π

∫ l/2

−l/2

1

|x′ − x− nd|2 dx′. (21)

Jackson [13, p. 36] notes how integrals such as these may be approximated for smalld. For
|x|À |a| we have

1

|x+ a|2 '
1

|x|2
{

1− 2a · x
|x|2 + · · ·

}
.

Applying this in the present context, the first integral of (21) becomes

− κ

2π
(yo − y)

∫ l/2

−l/2

1

|x′ − x|2
{

2dn · (x′ − x)
|x′ − x|2

}
dx′,

while the second becomes

κd

2π
(yo − y)

∫ l/2

−l/2

1

|x′ − x|
{

1+ 2dn · (x′ − x)
|x′ − x|2

}
dx′.

Neglecting terms ofO(d2) we write (21) as

ux(x, y) = −κd

π
(yo − y)

∫ l/2

−l/2

n · x̂
|x′ − x|3 dx′ + κd

2π

∫ l/2

−l/2

1

|x′ − x|2 dx′,

wherex̂ is the unit vector in the directionx′ − x. We can understand the numerator of the
first integrand geometrically since−n · x̂ is the cosine of the angleθ indicated in Fig. 3.

We follow [13] and formally take the limit of vanishing thickness

lim
d→0
κ→∞

κd =M,
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FIG. 3. Geometry of dipole sheet element centered at(0, yo).

where the bounded limitM represents here a tangential “impulse per unit length” as-
sociated with the dipole sheet. We can proceed to perform the integration by making a
substitution of variablesx′ − x = (yo− y) tanθ whereθ is the angle indicated in Fig. 3 to
determine

ux(x, y) = M
π(yo − y)

{
tan−1

[
l/2− x

yo − y

]
− tan−1

[−l/2− x

yo − y

]}

+M
2π

{
l/2− x

(l/2− x)2+ (yo − y)2
− −l/2− x

(−l/2− x)2+ (yo − y)2

}
. (22)

The formula for a sheet centered at (xo, yo) follows by substitutingx − xo for x in (22).
The vertical component of velocity is to be determined in a similar fashion from

uy(x, y) = −∂ψ
∂x
= − κ

2π

∫ l/2

−l/2
(x′ − x)

{
1

|x′ − x|2 −
1

|x′ − x− nd|2
}

dx′

= −κd

π

∫ l/2

−l/2

(x′ − x)n · x̂
|x′ − x|3 dx′.

Taking the thin sheet limit and equatingn · x̂ = (yo − y)/|x′ − x|, we get

uy(x, y) = −M(yo − y)

π

∫ l/2

−l/2

(x′ − x)[
(x′ − x)2+ (yo − y)2

]2 dx′

= M(yo − y)

2π

{
1

(l/2− x)2+ (yo − y)2
− 1

(−l/2− x)2+ (yo − y)2

}
. (23)

It is proposed to represent the solution of (3) in terms of elements of tangential impulse
density derived from partitioning a dipole sheet. We ascribe to this sheet an impulse per
unit length ofM=−uI · sl with uI · s evaluated at the mid-point of the sheet of lengthl .
An ensemble of such elements interacts according to Eqs. (22) and (23).

5.3. Singularity. We have explicitly performed the Biot–Savart integration expressed
in Subsections 5.1 and 5.2. We note that whereas the strength ofmI andmII sheets are
related to fieldsuI anduII , respectively, the velocity fieldinducedby these sheet objects is
not in any sense “equal” touI or uII . Rather, the induced fields have, in each case, a spatial
structure with source-point singularity.

In the case ofmII , from (18) the induced field componentux satisfies a condition of
regularity; uy on the other hand, from (19), admits logarithmic singularity at the end-
points (xo± l/2, yo). This is most directly smoothed (see [15]) by introducing an additive
smoothing parameter,δII , into the denominator of the integrand of (17). This approach will
serve our present purpose, although a more rigorous treatment of smoothing is available
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for this mII case (see [4]), which is achieved by convolving the integrand of (17) with a
smoothing kernel [3]. The logarithmic edge singularity of (19) is a result of the partitioning
of the vortex sheet (an equivalent smooth contiguous sheet does not admit this singularity).
This situation may be distinguished in character from the singularities arising in standard
blob methods in which the singular integrand of (17) is ameliorated, and hence made the
subject of a numerical quadrature.

The doublet-sheetmI-elements we have introduced in subsection 5.2 also admit singu-
larity in the fields they induce. Specifically, the functionψ(x) is discontinuous across the
sheet; therefore the normal derivative∂ψ/∂y (and henceux) is singular on the sheet itself.
The normal velocity componentuy is singular at the points(xo ± l/2, yo).

The induced field in the case ofmI elements does not consist of a point singularity,
but rather a singularity ony = yo, for |x − xo| ≤ l/2. Were we to convolve the relevant
Biot–Savart kernel with a smoothing function, we could reasonably require this function to
contract, upon refinement, to a line rather than to a point. As in themII case we shall take
the alternative approach of incorporating a smoothing parameter into the integrand of the
Biot–Savart integral.

5.4. Integration in time. As time progresses, thin vortex and/or vortex-dipole sheets
are created at the beginning of each time step (the discretized increment of time isdt) on
a solid boundary consistent with viscous boundary conditions. In either case the sheets
are each partitioned into sheet-elements of uniform lengthl I andl II , respectively. From the
dimensional considerations of Section 4, we expect typicallyl I¿ l II .

After creation, these sheet elements diffuse from the wall over time stepdt into the
flow interior; this viscous diffusion process is modeled here by imparting to each element a
random walk displacement (of zero mean, and variance 2dt/Re) as it evolves. In subsequent
time-steps, the elements are also translated in the velocity field induced by the particle
ensemble. Consider a planar wall aty= yo. In the case of vortex sheets the relevant velocity
field is determined by (18) and (19); in the case of vortex-dipole sheets, by (22) and (23).
Adopting the approach to smoothing described in [15] (and specifying relevant smoothing
parameters, e.g.,δII ∼ l II/2) we express the horizontal velocity field induced at a point
x= (x, y) due to an ensemble ofN vortex sheet elements of strength{κ j } centered, at time
t , at positionsx j (t)= (xj (t), yj (t)),

u(x, t) =
N∑

j=1

κ j K(x− x j (t)).

The integrated Biot–Savart kernelsK = (Kx, Ky) for the case of vortex sheets are deduced
from (18) and (19). Applied to each sheet in the ensemble, this leads to an evolvingN-body
Lagrangian system of elements. The trajectory of thei th element is approximated from a
numerical solution to the system of ordinary differential equations

dx̃i (t)

dt
=

N∑
j=1

κ j K(x̃i (t)− x̃ j (t))

(24)
x̃i (0) = αi ,

where, at timet , the locationx̃i = (x̃i (t), ỹi (t)) is determined by solving the system (24)
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using, for example, Runge–Kutta integration. The initial location of the element is the wall
itself, i.e.,αi = (xo, yo) for somexo∈ [0, L], andyo= 0.

A similar system (in terms of integrated kernelsL ) can be developed for the case of an
ensemble ofM vortex-dipole sheets (see Subsection 6.2).

As time progresses, the strength of an impulse sheet in the flow interior must evolve
according to (3). The evolution of local Cartesian components (mx,my) associated with a
particular element can be interpreted as an evolution in its strength (M) and a rotation about
its centroid. We express system (3) for vortex dipole sheets by the following “splitting”:
Euler advection is modeled as

D

Dt
mI = 0,

and viscous diffusion,

∂

∂t
mI = 1

Re
1mI .

To these are added the evolution of impulse strength implied by

∂

∂t
mI = −(∇u)TmI, (25)

where this latter splitting bears analogy to a common treatment of vorticity stretching in
three dimensions (discussed, for example, in [12]).

We will illustrate themII decomposition by modeling flow past a circular cylinder. This
requires treatment of flow far from the wall, such as that flow associated with the wake. We
expect vortex sheet elements to rotate in the stream of such interior flow. The interaction
equations must be adapted accordingly. We attach to each sheet a direction cosine pair, e.g.,
(cosθi , sinθi ) whereθi is the angle thei th sheet-normal makes with thex-axis.

We hence adapt Eq. (24) to represent the field induced by an ensemble of generally
oriented vortex sheets of strengths{κ j } so that

u(x, t) =
M∑

j=1

κ j R j K
(
R−1

j (x− x j (t))
)

with rotation operator given by

Ri =
(

sinθi cosθi

−cosθi sinθi

)
. (26)

6. BOUNDARY LAYER FLOW—CASE OF m I

6.1. The limit of Blasius flow. We investigate numerically the case of boundary layer
flow over a flat semi-infinite plate to illustrate themI decomposition. We could expect
a single element to induce a lateral component of velocity proportional tol I (from the
angle subtended by the sheet) divided by a vertical displacement. If we take this
displacement to be comparable to a viscous displacement we inferl I dt∼O(2dt/Re).
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From this we deduce

l I ∼ O

(
1

Re

)
. (27)

Our approach will be to specify a partition of the wall consistent with (27).

6.2. The fielduI . In the present case of flow in a half-space bounded by a flat plate,
we do not require to determine explicitly the solution for the functionφI discussed in
Subsection 3.1. For flow induced by an ensemble ofM vortex sheet elements{M j } located
at points (xj , yj ) we write the discretized Biot–Savart law as

u(x) =
M∑
j

M j L(x− x j (t)).

We can effect the conditionuI ·n= 0 on∂D by introducing an ensemble of images{M′j } at
the reflection points (xj ,−yj ) withM′j =+M j . The required field is thus written explicitly
as

uI(x, t) =
M∑

j=1

M j L(x− x j (t))+M j L(x− x′j (t))

with x′j (t)= (xj (t),−yj (t)) andx∈ ∂D.

6.3. Numerical results. We consider the case of uniform incident flowU = 1 (started
impulsively att = 0) over a semi-infinite flat plate occupyingy= 0, x> 0. For a Reynolds
number ofRe= 200 we would expectl I ∼ 0.005. By way of making an initial illustration of
the computational domain, we choosel I = 0.005 with smoothing factor chosen to beδI = l I/2
anddt= 0.1. Figure 4 shows the distribution and size ofmI elements in the neighborhood of
the leading edge after 50 steps have elapsed. One can see the development of a boundary layer
profile. To demonstrate that this developing regime tends, upon averaging over time, to a
self-similar Blasius profile, we choose four measurement locations along the plate:x1= 0.25
(s); x2= 0.5 (d); x3= 0.75 (×); andx4= 1.00(+). This averaging of velocity at lateral
points is intended to reveal the degree of “self-similarity,” or otherwise, in the computed
velocity profiles (see [8, p. 129]; or [29, 4] for similar comparisons using standard vortex
sheet methods). In Fig. 5 we plot the profile of averaged velocity at each lateral location
as a function of boundary layer similarity variableη= y

√
Re/xm. At each time-step these

profiles are evaluated after the created sheets have been advected and diffused. The flow
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x

 ← °  ← •  ← ×  ← +

FIG. 4. Distribution of vortex dipole sheets from leading edge of a flat semi-infinite plate after 50 time-steps
have elapsed (l I = 0.005, dt= 0.1,Re= 200). Vertical dashed lines indicatex-locations of velocity profiles.
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FIG. 5. Mean horizontal velocity profiles after step 50 averaged over preceding 47 steps at the four lateral
locations indicated in Fig. 4; dashed line is the Blasius profile.

associated with Figs. 4 and 5 starts impulsively att = 0; since the averaging process over
the first three steps will be associated with impulsive transients, these steps are excluded
from the averaging.

The prescription of (27) suggests that Blasius flow should correspond to a choice of sheet
lengthl I of order 1/Re. This parameter can be varied; the “closeness” to Blasius profile (in
anL2 sense) can be examined for a choice of smoothing prescription. Figure 6a illustrates
the result of choosing sheet lengths in the rangel I ∈ [0.003, 0.01], with δI = l I/2, and with
the average taken over 30 time-steps. We note a minimum in error in the neighborhood of the

FIG. 6. (a) L2 error norm expressing fit to Blasius profile of the aggregated four velocity profiles at lateral
locations indicated in Fig. 4 as a function of sheet lengthl with smoothing parametersδ= l/2; (b) L2 error norm
for l = 0.005 as a function of smoothing parameter,δ/ l .
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FIG. 7. Downstream distribution of vortex dipole sheets at two levels of spatial refinement. (a)l I = 0.003;
and (b)l I = 0.012.

prescription (27). Figure 6b illustrates how error varies with smoothing parameter, for fixed
sheet length (l I = 0.005).

If we observe the distribution of dipole elements at increasing distance downstream, the
velocity profiles become increasingly less self-similar. Downstream sections seem to achieve
a stable quasi-uniform boundary layer thickness as time advances. Figure 7 illustrates
the downstream distribution forx ∈ [2, 4] for two choices of sheet length:l I = 0.003 and
l I = 0.012. These choices correspond to parameters falling above or below the prescription
defined by (27). In Fig. 7a we havel I < 1/Reand diffusion is expected to predominate over
advection; in Fig. 7b we havel I > 1/Reand advection dominates. By construction, the scale
of the parameterl I expresses the spatial scale of impulse imparted to the flow; the evidence
of Fig. 7 suggests that it also influences the scale of lateral structures which develop in the
boundary layer.

7. FLOW PAST A CIRCULAR CYLINDER—CASE OF m II

7.1. Preliminary remarks. We investigate now the vorticity generation associated with
flow past a bluff body related to themII decomposition in isolation.

We consider a circular cylinder,∂B, of unit radius centered at (0, 0). At timet = 0 a unit
flow in the positivex-direction impinges on the body; unperturbed this flow isU = (1, 0).
At t = 0 (with no previously generated impulse or vorticity in the flow interior) the field
UII = (UII ,VII ) can be determined consistent with condition (13) and with the uniform
inlet/outlet condition of the free-stream. We have

UII = 1+ x2− y2

r 4
(28)

and

VII = 2xy

r 4
. (29)

Hence we can infer from (12) a normally oriented wall impulse associated with this free
stream given bym f

II · r̂ =−(UII ,VII ) · r̂ , with r̂ the unit radial vector.
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7.2. The fielduII . In the case of themII decomposition we need to determine a fielduII

consistent with condition (13) at each time-step.
One way to proceed is to express a perturbation velocity potential,9P, in terms of a

single-layer potential function so that

9P(r) = − 1

2π

∫
∂B
σ(ro) ln |r − ro| dl(ro),

whereσ(ro) is a source distribution function at a pointro on the cylinder∂B. From this we
determine an perturbation velocity field, generally as

uP
II = ∇⊥9P = − 1

2π

∫
∂B
σ(ro)∇⊥ ln |r − ro| dl(ro), (30)

where∇⊥ ≡ (−∂/∂y, ∂/∂x). We identify uP
II as the perturbation which, when added to

the velocity associated with the field induced by the distribution of impulse (um) achieves
condition (13) on∂B. This is to say we write

uII = um + uP
II (31)

with uII · s= 0 on∂B. This leads to the integral equation developed by Martensen [21]

σ(r)
2
+ 1

2π
−
∫
∂B
σ(ro)[−(y− yo)sx + (x − xo) sy]|r − ro|−2dl(ro) = um · s (32)

to be solved forσ at each pointr ∈ ∂B, with s= (sx, sy) representing the local unit tangent
vector atr . This problem we can discretize, for example, using a constant-panel Nystr¨om
approach. Having solved forσ we deduceuP

II everywhere in the fluid through a quadrature
version of (30). Finally we determine the field,uII , from (31).

7.3. Creation and translation of vortex sheets.At pointsx= (x, y) on the cylinder, and
at each time step, we require to determine the strength of the vortex sheet to be created there
in order to establish impermeability. This strength derives from the lateral gradient of the
normal component of velocity sinceκ =−ξd= ∂(uII ·n)/∂s d, whered is a vertical length
scale which we may take to be some multiple of

√
1/Re.

We partition the circle∂B into panels each of lengthl II . At each time step the vorticity
ξ is evaluated at the centroid of each panel using a difference approximation for the lateral
velocity gradient. We will take the partition parameterl II to be proportional to the viscous
scale length—consistent with the discussion in Subsection 4.1. It is therefore to be scaled
in inverse proportion to the square root of Reynolds number, i.e.,l II ∼ 1/

√
Re.

At t = 0 a unit flow in the positivex-direction is incident on a unit circular cylinder
centered at the origin (0, 0). As time progresses, thin vortex sheets are created at each time
step on the cylinder’s surface consistent with viscous boundary conditions. Apart from the
distinct creation criteria, we have at this stage something which resembles a standard vortex
method.

For flow induced by an ensemble ofN vortex sheet elements{κ j }, we can express the ve-
locity as a Biot–Savart integral which takes a discretized form as described in Subsection 5.4.
Since we require the field induced at a point (x, y) by an ensemble{κ j } located at points
(xj , yj ) in the flow interior to satisfyu · n= 0 at∂B, we introduce a system of images{κ ′j }
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of strengthκ ′j =−κ j at inverse pointsr ′j = (r j cosβ j , r j sinβ j ) inside the cylinder, where
β j = tan−1(yj /xj ) andr 2

j = x2
j + y2

j . In addition to these, to enforce irrotationality of the
image field, an additional image is introduced at the center of the cylinder with strength∑

j κ j .

7.4. Numerical results. We illustrate the computation for the present case by pursuing
the following numerical parameterization. We make a choice of time-step interval,dt, which
is guided by the discussion in Section 2.4 of [24]. The free-stream velocityU can be varied
relative to the dimensions of the cylinder in such a way that the product ofU anddt is kept
constant. We also keep the parameterRe=Ur/ν constant.

The fixed radius of the unit cylinder isr = 1. The cylinder surface is partitioned into 75
panels of length 2π/75, corresponding to the intended sheet element length. Since a Poisson
equation is to be solved over this surface, a second more refined partition is constructed for
this purpose, with 500 nodes.

By way of demonstration we consider the flow illustrated in plate 94 in Van Dyke [11]:
this represents a free-stream of 1.4 cm/s flowing past a cylinder of radius 0.5 cm; the
Reynolds number is 140. We reflect this proportion between cylinder radius and free-
stream velocity by the following model: we chooseU = 3, r = 1, Re= 140. We determine
l II = 2π/75' 1/

√
Re. From the CFL condition we inferdt= 0.02819. The smoothing pa-

rameter is chosen to beδ= l II/4.
The flow is started impulsively att = 0. At the initial time-step the free-stream field

components described in Subsection 7.1, namelyUII = (UII ,VII ), are calculated at the nodes
of the refined partition; from this the radial componentm f

II · r̂ is inferred at each nodal point.
Hence the lateral derivative∂(m f

II · r̂)/∂s is calculated, withs the arc-length variable, taken
positively in the direction of increasing angle (θ ) measured from the positivex axis (i.e.,
from the downstream stagnation). This differentiation is achieved using center-differences.
From this a vortex sheet strengthκ is calculated.

Figure 8 illustrates the instantaneous distribution of sheet locations at 30-step intervals
after impulsive start-up. At step 90 there are some 3200 elements represented in the flow.

FIG. 8. Evolution from impulsive start-up of flow past a cylinder.
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FIG. 9. Function distributions over the cylinder surface at step 90. (a) The right hand side to the integral equa-
tion (32); (b) normal component of field deduced from (32); (c) free-stream contribution defined in Subsection 7.1;
(d) sheet strengthκ (with d= 0.25/

√
Re).

The open circles represent elements whose sense is positive (i.e., induce a velocity which
rotates counter clockwise). The filled circles indicate a negative sense. We note the structure
of the wake begins to develop asymmetry at this step, and downstream oscillatory instability
forms.

Figure 9 illustrates distributions (over the surface of the cylinder) of various functions
which are relevant to the present calculation. These are plotted for the 90th time-step as
a function ofθ , the angle taken from the downstream stagnation. Figure 9a illustrates the
distribution of tangential velocity induced by dipole elements (in the flow interior) created
previously to the 90th time-step. This is namelyum · s, whereum is the variable appearing
on the right-hand side of the integral equation (32) and is the velocity field induced inR3

introduced in Subsection 3.2. (The downward arrow in Fig. 9a indicates the location of
upstream stagnation on the cylinder, i.e.,θ =π .) Figure 9b illustrates the distribution of
the fielduII , determined from (31); this is a field normal to∂B. Figure 9c illustrates the
component of the free-stream fieldUII , tangential to∂B; this is determined from (28) and
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(29). The distribution of sheet-strength to be created at∂B at the 90th time-step is illustrated
in Fig. 9d. This is calculated from the lateral gradient (approximated by center-differences)
of mII · n=−(UII + uII ) · n.

Figures 10 and 11 illustrate the subsequent evolution of elements over 400 time-steps.

FIG. 10. Evolution of flow past a cylinder,Re= 140,dt= 0.02819,U = 3.0. Steps 100, 200, and 300.
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FIG. 11. Evolution of flow past a cylinder, step 400.

8. CONCLUSIONS

We have introduced two particular choices of the functionφ in Eq. (2) which are consistent
with wall impulse oriented in two orthogonal directions, normal and parallel to the wall,
respectively. Each case can be related to the creation of impulse at the wall to effect the
velocity boundary condition. Taking wall impulse densitym to be normal to the wall is
associated with the creation of vortex sheets; taking it to be parallel to the wall is associated
with the creation of vortex dipole sheets. The two creation processes can, in principle, be
superposed.

There has been experimental, numerical, and theoretical evidence to suggest that flow
structures in wakes and in separating shear layers are somehow related to a combination of
“single-sign vorticity” and “double-layer vortices” (roughly cast into present nomenclature:
monopole sheets, and dipole sheets). See, for example, [1], or [16]. In an analysis of Euler
flow, Moffatt [22] identifies the existence of two kinds of tangential discontinuity: that of
velocity (vortex sheets) and that of vorticity (which in our language implies dipole sheets).
The decompositions we propose provide a rationale for the creation of such objects at a
wall based on the equation of motion and its associated wall boundary condition.

Our object here has been to introduce the idea of such decomposition and to illustrate
this with numerical experiment. Our illustrations are constrained by obvious simplifying
assumptions: for example, we use smoothing strategies which, while commonly invoked for
vortex sheets [15, 1] nevertheless are not accompanied by a rigorous convergence theory.
Also we do not express numerically the deformation and rotation ofmI elements in the
present exercise.

Viewed as a method of “vorticity-creation,” the decompositions presented here may
seem counter-intuitive. Intuition in this matter is informed by the insights of Chorin [7] or
Lighthill [19]—and originally Rosenhead [25] and Stokes (see [32, letter, Sect. 643])—who
in various contexts consider surfaces of discontinuity in the flow as vortex sheets. A solid
wall constitutes such a surface of discontinuity so it is plausible to associate a vortex sheet
with a finite “slip” in velocity there. Consistent with this plausibility argument, the creation
of single-layer (i.e., monopole) vortex sheets at a wall would be associated specifically with
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the no-slip condition. However, a more complicated picture emerges from present impulse
considerations. Vortexdipole sheets are created specifically to effect no-slip (that is to
saymI creation is associated with tangential impulse at the wall). Impulsive forces which
develop normal to the wall determine the creation ofmII elements, these being equivalent,
via their gradients, to the creation ofmonopolevortex sheets.

ThemII decomposition has an antecedence in the Lagrangian model of flow developed
by Lord Kelvin (see [14]). Kelvin considers a stationary solid body immersed in a moving
inviscid fluid (specifically in a velocity field with harmonic potential, equivalent to our
irrotationaluII fields). The pressure exerted by the fluid normal to the surface of the body,
integrated over an interval of time, is equated (with sign reversal) to the equilibriating
impulse imparted to the fluid by the body. ThemI case can be seen as a complement to
Kelvin’s original model, one which generalizes it to include the tangential forces which
preoccupied Stokes [28]. FormI-decomposition one conceives of a viscous shear stress
tangential to the solid boundary. Integrated over a small interval of time, this is identified
as that impulse imparted to the fluid by the action of wall friction.

There exists a three-dimensional analogue of the present impulse representation (dis-
cussed elsewhere—see [30]) which leads to the creation of elements which respect the
solenoidality condition for vorticity. The creation principle does not, in itself, advance the
global circulation of the flow.

The decomposition we describe would seem to be simple, reflecting the fact that it is a
natural consequence of the Hodge decomposition (2). Yet there are promising indications
that this simple decomposition may provide a basis for a dynamically complete Lagrangian
representation of bounded viscous flow.
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