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A Lagrangian representation of bounded incompressible flow is introduced in
which viscous boundary conditions are given kinematic expression by the genera-
tion of impulse at the wall. The relationship between such a process and the boundary
conditions is deduced from two complementary Hodge decompositions. The orien-
tation of the created impulse vector may be chosen to be parallel at the wall (this
being equivalent to a thin vortex doublet sheet) or normal at the wall (this being
a thin monopole vortex sheet). Although the representation is developed here for
two dimensions, it can be generalized in a natural way to three dimensions. The
case of tangentially oriented wall impulse is applied to flow over a semi-infinite
plate; the case of normally oriented wall impulse is applied to flow past a circular
Cylinder. (© 2000 Academic Press
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1. INTRODUCTION

The problem of modeling slightly viscous flow over a solid boundaf®, may be
formulated in terms of vorticity transport (expressed here for two dimensions),

D¢ 1
Dt = @Af (1)
where D/ Dt is the material derivativeReis Reynolds number, and is the Laplacian
operator. The vorticity field§, is defined as the curl of the velocity fieldnamelyt =V x u.

We consider the flow to be incompressib¥e {(u =0). The solution to (1) would require
boundary conditions fg§ ondD; there is no unique expression for this to be derived from th
velocity conditionu = 0 ondD. On the other hand one may try to understand the vorticit
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boundary condition in terms of a physical process. A family of Lagrangian numeric
methods (e.g., see [7]) has been developed in which one of the boundary conditions t
satisfied byu at a wall (this is namely the no-slip condition) is represented in terms «
vorticity creation there. This is to give algorithmic expression to an idea which has be
proposed a number of times in earlier literature (e.g., see [19, 25], or see Stokes’ lette
[32, Sect. 643]). The flow which evolves from this creation principle is typically represent
in terms of the kinematics of an ensemble of point vortex elements whose singularity
ameliorated by a smoothing strategy.

The robustness of vortex methods in two dimensions derives from the Hamiltonian nat
of the underlying Euler flow problem. Unfortunately this Hamiltonian property does n
generalize in a simple way to corresponding point vortex elements in three dimensions.
dilemma of generalizing a Lagrangian representation of a continuum vorticity field frc
two into three dimensions can be understood as one of finding a consistent relation:
between a vorticity field which is macroscopic and extensive, and a Lagrangian “partic
of compact support. In two dimensions geometrical symmetry resolves the problem for
vorticity extends in directions perpendicular to the plane of flow so a representation of
continuum field in terms of point vortices is consistent with the extensive character of 1
field. It is precisely this which is lost in a generalization to three dimensions where ©
expects (by virtue of the solenoidality &f the lines of equivorticity to extend throughout
the fluid in macroscopic closed filaments. There is a particular difficulty when we cor
to reconcile such a global, solenoidal vorticity field to its creation at a wall in response
viscous boundary conditions—conditions which express the macroscopic effect of los
molecular processes.

These facts motivate an alternative representation of flow in terms of fluid impulse dens
which is to say in terms of a vector field of compact support. This formulation of the Eul
problem leads to Lagrangian representations which are Hamiltonian in three dimensions
[5, 6]). Furthermore, problems characterized by slight viscosity can be cast as a dissipe
perturbation of the Hamiltonian dynamics (see [30, 31]).

In the present note we develop, in two dimensions, a representation of viscous boun
conditions in terms of the creation of impulse at the wall. In contrast to standard vor
methods, this representation generalizes naturally into three dimensions.

The velocity wall conditioru =0 may be expressed in terms of a wall impulse whick
is oriented parallel to the boundary, or alternatively, it may be oriented normally to t
boundary. The former case we can associate with the creation of a vortex doublet st
the latter with the creation of a vortex (monopole) sheet. We illustrate these two ca
numerically in Sections 6 and 7.

2. EQUATIONS OF MOTION
We define impulse densitgy, through the relationship
u=m+ Vo, (2)

whereu is the divergence-free velocity field, and where we understata be a scalar
function andv¢, being curl-free, is anirrotational field. In the literature a variety of nomer
clatures is attached to: “vortex momentum density” [17], “velicity” [5], “magnetization
variable” [6], and “impetus variable” [20].
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Implicitto Eq. (2) isthe general property of Hodge decomposition [27]: any vetiorgn
be decomposed into the sum of two vectors, one of which is divergencesjrend other
curl-free V¢). Itis inthis particular sense that we will refer to (2) as a “decomposition.of
The expression (2) also resembles a Helmholtz decomposition of velocity into irrotatiol
and non-irrotational parts. It is important to note that we do not imply by thisrthet
divergence-free: although the varialmiehas the physical dimensionality of velocity, it is
more usefully understood as an impulse density.

The fieldm is of compact support: it is this property which implies it is an impulse
“density,” since in this case it is formally related to fluid impulsgthrough

[

[5, 6, 10, 26]. Vorticity is related ton through€ =V x m. An equation of motion can be
determined [23, 5, 6, 9, 10] fan in the case of an incompressible viscous fluid by substi
tuting u from (2) into the non-dimensionalized Navier—Stokes equation. Upon substituti
we find
Dm+(Vu)Tm 1Am—V D¢+luu 1A¢> =VA
Dt Re " \Dt "2 PmRe™) =
(where theij element of the matrix{u) " is du; /dx; and p is pressure). Upon choice of
gaugeA = 0 we determine two consistent equations. We determine
Dm 1
— =—(Vu)'m+ =—Am 3
Bt Vuy'm+ o ®3)
and note that this equation of motion does not invalve
We also determine the equation
D¢ 1, 1
— =—Cu —A¢, 4
Dt 2| "+ p+ Re ¢ 4)
which is a transport equation f@r in which pressurep, appears explicitly; the variable
m does not appear however. This separation of the Navier—Stokes equation into Eqs
and (4) is obviously not unique, but follows upon the particular choice of gange0.
Smereka and Russo [26] describe this choice as the “geometric gauge.” It is the most wi
studied case (e.g., [5, 6, 10]), and its geometric properties suggest it is the most approp
gauge for Lagrangian models of flow. (In the case of Euler flow, the oriented surface to
associated witlm is “frozen into” the fluid [26].) In any case, choice of gauge should no
affect the velocity solution to the Navier—Stokes problem.
Since we are interested in incompressible flow, and in applying boundary conditions
fixed instants of time, we can apply the divergence operator to (2) and, if wé&/nate- 0,
we determine a more useful equation for our purpose: given, at an instant ¢f tarkeown
distribution of impulse in the flow denoted oy, the functiong will satisfy the Poisson
equation

Ap=—V-m. (5)

This Poisson problem is well posed if appropriate boundary conditions are specified
¢. If a gradient condition is prescribe@, is determinable only to an additive constant;



REPRESENTATION OF BOUNDED VISCOUS FLOW 31

however, we will use the fact that the fieldp—and hence the decomposition (2)—is
uniquely determined in such a case.

3. TWO DECOMPOSITIONS AT THE BOUNDARY

3.1. Viscous boundary conditions at a solid wal”t a solid wall 3D with unit normal
n and unit tangential vecta; the wall conditionss - n =0 (impermeability) andi - s=0
(no-slip) imply from (2) the union of conditions

M-N=—0¢/on } onaD. (6)

M xNn=—3¢/dss

Thus if we are to solve (3) we will need to specify the gradient$ af 9D. Two obvious
simplifications result if we choose, in turn, each of the gradients in (6) to vanish, i.e., if\

choosep so that orvD
m-n=0
)

M xNn=—3¢/dss

or alternatively
m-n=—a¢/on }
: 8

mxn=0

We note that the choic#p/ds = 0 invoked in (8) implies, upon surface integration over
the boundary, a Dirichlet condition fgr. On the other handg/9n = 0in (7) isa Neumann
condition. These two gradient conditions each determine a unique Hodge decompos
of m at the wall. Conditions (7) imply an impulse densitywhich is tangential at the wall;
conditions (8) imply an impulse density oriented normally at the wall. We denote the w
impulse density associated with conditions (7yasand that with (8) asn;; furthermore
we associate these with scalar functignsande,, respectively.

On the basis of the foregoing discussion, we can now construct two decompositic
Given a distribution of impulse in the flown, we can, from Eq. (5), determine a function
¢, satisfying the Poisson equation

A¢ =—V-m )

together with the boundary conditidig,/on = 0 ondD. From this functionp, we can
determine an irrotational velocity field such that

u = Vg
which, by virtue of our particular choice gf satisfies the following conditions at the wall:

u-n=0 (10)

U -sS=-m;-s (11)



32 D. M. SUMMERS

Similarly for the¢, case we deduce from (5)
Ay =-V-m

together with the boundary conditi@y, /9s = 0 onaD. In this case we determine an
irrotational fieldu;, = V¢, satisfying at the wall

U -Nn=-my-n (12)
uy-s=0. (13)

At a fixed time and for a given distributiom in the flow, we can thus solve two well-
posed Poisson equations fyrand¢; and hence determine two irrotational fieldsandu,
which at the wall are parallel to, and normabt®, respectively. These irrotational fields, by
construction, satisfy one of the two boundary conditions—impermeability (10) or no-sl
(13).

It remains to give meaning to the complementary boundary conditions (11) and (1
These two conditions imply the existence of wall impulse veatgrandm,;, respectively.

In each case, having solved for irrotational fielgandu,, , we are in a position to deduce—
from (11) and (12)—the magnitude and orientatiompindm;,. This constitutes a strategy
for relating the viscous boundary conditian= 0 to the imparting of impulse to the flow.

3.2. Heuiristic interpretation afn, andm,,. Althoughm, - sonaD can be determined
from the boundary conditions as we have described, no knowledge aivay fromaD
can be derived from these conditions. This implies we cannot construct the normal grad
of m, exclusively from the boundary conditions, nor can we construct a wall vorticity. (F
example, ifm, is strictly tangential to a planar bound&, we define wall vorticity there
as

E=V xms=—-om;/ank

with k = n x s; but, as we explain, such a normal derivative cannot be inferred from tf
boundary condition.) The conditiam - s = —m, - s # 0 implies a sheet discontinuity in
tangential impulse a&D, which we express as a horizontal “impulse sheet” of magnitud
m,. For example, in the case where there is no initial impulse in the fiow O, andg, is
harmonic) the implication ofi, - s = —m), - sis that, confined to the surfade, there is
non-zero tangential impulse with the obvious implication that this must be a thin doub
sheet.

The m; case invites a contrasting interpretation. The impulse densjtyserves as a
vector potential for tangential vorticity at the wall. Again, to take the case of a plane surfe
we define

£=me||n=8m”/ask onoD.

Such a lateral derivative can be inferred from the boundary condition. Thus the creat
of a thin sheet of normal impulse at the wall is equivalently a sheet of wall vorticity. |
the two-dimensional context, we can understand this sheet of normally oriented impuls
terms of a system of vortex pairs whose pair-axes are aligned parallel to the wall. Thi
equivalent to a system of coplanar vortex monopoles.
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The decompositions proposed in Subsection 3.1 reflect two natural symmetries in
boundary value problem. We infer from the present discussion that a solid wall in cont
with a viscous flow is a generating surface for impulse dipoles. We have described
modes of generation, both of which are consistent with the wall conditie®. We also
note that these can be superposed.

Taken in a Lagrangian sense, the consequences (to the evolution of interior flow) of
superposition at the wall can be modeled by an ensembtge ahdm,, objects interacting
with each other (i.e., moving in each other’s induced velocity fields). The dimensior
implications of each decomposition (see Section 4) imply that this will reflect, at least
part, an interaction between different scales in the flow. The notion that fluid flow can
numerically modeled by a superposition of fields induced by vortex sheets and vortex-dir
sheets was introduced (in the unbounded, inviscid setting of free shear layers) by Kre
[16].

4. CONSIDERATIONS OF DIMENSIONAL SCALE

4.1. Bounded flow in two dimensiondn the x — y plane we consider a wall 3t=0
with y > 0 occupied by fluidj andj represent unit vectors in the and y directions,
respectively. By way of approximation, we shall conceive of a regime in the neighborha
of the wall in which the impulse fielth is constrained according to (7)—i.e., tirg case;
or, alternatively, to (8)—i.e., thm, case.

We could conceive of an array of vortex pairs and, consistent with a presumed thinr
of this doublet sheet, it can be subjected to the limiting procedure

M(X) = Icm rd, (14)

r—o0

where the bounded limi#1(x) represents the tangential impulse per unit length of wall an
I is the modulus of the circulation of each vortex in the paiis the dipole separation. By
way of determining the sign of vorticity, the pairs will be created in such a way that impul
is oriented in the directior-u, (X, 0) - s. Figure 1 illustrates schematically the situation for
the case of uniform flow over a wall (the filled circles represent vortices of negative sig

Them, case follows in a similar manner: consistent wittk n = 0. We identify a normal
component of wall impulse to by (x, 0) = —uy - n, from which we can construct a wall
vorticity £(x, 0) =amy/dx onaD.

The equivalence of this to a system of monopoles is illustrated in Fig. 2 and is forma
established by taking a center differencengf with respect tax. Except in the case of a
closed boundary, the endpoints are excluded from this differencing.

«

o [ ] [ ] o ° o
FIG. 1. Schematic distribution of vortex dipoles created over a surface in response to a uniform slip velo
flowing from right to left.




34 D. M. SUMMERS

m
m
m
L] ]
L] o
FIG. 2. Schematic distribution of vortex pairs in the casemgf, impulse density increasing linearly as
This is equivalent to an array of monopoles of uniform orientation and strength.

Having constructed (x, 0) from my(x, 0), we can conceive of this wall vorticity as a
created thin vortex sheet with strength (or linear circulation density) such that

. d 3
k() = lim /0 a—yux(x, y) dy. (15)

The creation procedure we introduce hererfgy, in itself, conserves global circulation
since vortexpairs are created. Once wall vorticity is created it is then subject to viscol
transport across the streamlif®; it is this mechanism which evolves the circulation of
the flow. It is important to note that this change in circulation proceeds on a local, diffusi
scale (see the discussion in Subsection 5.2 of Batchelor [2]) and is not to be governe
a non-local, elliptic operator such as that associated with a Poisson equation. (The th
dimensional analogue of a “vortex pair” is a “vortex loop”: the implication of representin
the viscous boundary condition in terms of the creation of vortex loops is that, in thr
dimensions, the created vorticity is naturally solenoidal.)

4.2. Dimensional scale fam;,. Consistent with our present discussion, we conside
a near-wall fluid regime of thicknessover a boundary ag = 0. The scale of the lateral
variable isx ~ O(1); the normal length scaleys~ O(§). These dimensional considerations
imply the following:duy/dt ~ O(1); ux ~ O(1); duy /X ~ O(1). The continuity condition
V -u=0implies then thaduy/dy ~ O(1), henceuy ~ O(8). Furthermoredp/ax ~ O(1)
andop/dy ~ O(8). We can apply these dimensional considerations to the non-dimensiol
Navier—Stokes equation, in Cartesian component form, to determine the Prandtl bount
layer equations.

From this we can infer the dimensional scale of vorticity by observing that

£ = duy  duy
9y X

and deducing thag ~ maxO(3), O(8)) = O(3). This applied to the non-dimensional
vorticity transport equation leads to the vorticity analogue of the Prandtl equation (see [
namely

D& 19%

= —— 16
Dt Redy? (16)



REPRESENTATION OF BOUNDED VISCOUS FLOW 35
By the same token we can infer the dimensional scale of impulse demsigrom the
fact thatV x m=¢&, we infer
omy  amy o 1 .
ay axX )

Choosing the maximal dimensions for each term to determine dimensional consistency
determinam, ~ O(1); my ~ O(3).

4.3. Dimensional scale fon,. We propose now a complementary dimensional mode
to that of Prandtl. In this setting ~ O(e), y ~ O(1), duy/dt ~ O(e); dux/Ix~ O(D);
duy /0y ~ O(1), henceuy ~ O(1). Furthermoregp/ax ~ O(e) anddp/dy ~ O(1). Ap-
plied to the Navier—Stokes equation, an approximate evolution equation in primitive ve
ables (specifically imy) is determined. Similarly, the dimensional scale of vorticity can b

deduced from
B 0 1
&= Oy _ e | max(O(—), O(e)).
ax ay €

The corresponding dimensional scale of impulse density is inferred (as before in sub:
tion 3.1) from its relationship to vorticity; in this case we have

amy  amx o1,
X ay €

Thus, following the same policy as before we dedogze~ O(;l) andmy ~ O(1).

5. LAGRANGIAN REPRESENTATION

5.1. Thin sheet elements: Thg case. At any given time-step we postulate the exis-
tence at the wall of a vortex sheet such that the wall vorticiy2som, /dx. To achieve an
ensemble of Lagrangian elements of compact support the sheet is partitioned into elen
each of length and centered at pointg{, y,). Consistent with a mid-point rule approxi-
mation of interior elements, we can consider each sheet element to have a constant v
sheet strengthk. An approximation to the velocity field induced by such an element we
introduced by Chorin in [8], but in order to provide a unified treatment we pursue here
alternative approach to approximating the velocity field of a vortex sheet, similar to tt
employed by [15] and others. This is to specialize the Biot—Savart integral to the case
horizontal plane sheet element of uniform strengttand length centered atx,, y,); we
have

K 72 Yo=Y, =X+ X% —X))
uex,y) = P /l/z 2 dx a7)

with |r'] = (X" + %o — X)i + (Yo — ¥)j. The components of velocity, = (ux, uy), can be
determined explicitly as

Ue(X.y) = % {tanl (XO ;ox—+y| /2) ~tam? <Xo ;ox—_yl /2>} (18)

_ (X0 =X —1/2%+ (o~ y)?
Uy (X, ) = 5= '°g{ (o — X+1/27+ (Yo — y)z} '

(19)
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The tangential component is proportional to the angle subtended g} by a horizontal
sheet of length centered atx,, Vo).

To confirm that such a monopole sheet element is related to an impulse vector orier
normally to the sheet, we can specialize the definition of impuls®, the case of a thin
horizontal vortex sheet of lengtitentered aty(,, Yo). In two dimensions impulse is defined
(see, for example, article 152 of [18]) as

|=//Arx5dA,

where we takeA to be an area adjacent to the wall containing the vortex sheet eleme
This element is of compact support and occupies theXire(—1/2,1/2) ony = 0. We
take wall vorticity to be = —duy/dy k there. If we consider this area to be a rectangle o
width| and heighd (i.e., an “overburden” of arda above the wall) we can determine the
impulse associated with this area as

12 AUy AUy
| = — i+ (X — Xo)—] pdxdy.
//I/Z{ — ¥o) i+ 0= ) ay’} y.

We reverse the order of integration and take into account the thin-sheet supgaotyof

taking the limitd — 0 so that
1/2 1/2 _ d Iy
'= /|/2 {‘I‘Iino }dx+1/|/z(X_XO){‘I’ILn0/o Wdy}dx.
The inner integral of thecomponent can be integrated by parts and, if we requie the

wall to be bounded—consistent with (18)—this integral vanishes in the limit. Invoking tt
definition of a vortex sheet (15), we have simply

1/2
I=/<j/ (X — Xo) dX = —Xol k],

wherex is the sheet strength (circulation per unit length of the sheet). This is the impu
we associate with areé; we divide by this area to obtain an impulse density:

Xok

-7 (20)

m=myj =
Thus the impulse density to be associated with atangentially oriented vortex sheet embe:
in an area of fluid,A, is itself oriented normal to the sheet, as we would expect fror
dimensional considerations. Differentiating from (20) with respect t&, we recover the
vorticity of the sheet = —«/d.

5.2. Thin sheet elements: The case. Following the discussion of subsection 4.1 we
introduce a thin dipole sheet which can be visualized as a doublet consisting of a vol
sheet §) of uniform strengthx separated by a uniform distandérom a vortex sheet%)
of strength—«. To determine the velocity field induced by an element of a partitioned thi
dipole sheet, we propose to evaluate the field due to the doublet, then takeda-tmt as
described by Eqg. (14).
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We denote points 0§, asx’ = (X, Y'); hence points of$; are expressed a8 = x’ — nd,
wheren is the unit normal to the double sheetxatThe stream function at = (x, y) for
this double sheet is

Y (X) = _i/ {InX = x| —In|x = x — nd|} dx’.
27'[ S

Toward representing such a sheet by a sum of Lagrangian elements of compact suj
we pursue a similar partitioning strategy to that introduced in the previous section. For
horizontal component of velocity at positien= (X, y) induced by a flat sheet aligned in

the x-direction, we have

U y) = L X /Sl{ y-y y-y-d }dx’.

ay ~ o X —x|2 |X —X—nd|?

Upon partition we consider a sheet element of lehgtbntered ax’ = (0, y,), so that

1/2 1
— dx
5%, ) = 5 (o = y)/./z{w e nd|2}
kd [172 1
— ———dX. 21
+2n/_|/2|x/—x—nd|2 (21)
Jackson [13, p. 36] notes how integrals such as these may be approximated fat. $roall
|X| > |a] we have
1 1 1 2a- X n
Ix+al2  x? Ix|2 '
Applying this in the present context, the first integral of (21) becomes

( )/'/2 1 2dn - (X' — X) dx’
PP L x5

while the second becomes

172 2dn-(x’—x)}
_ = 7 \dx
(y° y)/l/ IX’—XI{ X — X2

Neglecting terms 0D (d?) we write (21) as

xd 172 n.x . kd 172 1
ux(X,y) = —?(yo—y)/ dx' + —

S X =xP3 2 o1 X —Xx[?

whereX is the unit vector in the directior’ — x. We can understand the numerator of the
first integrand geometrically sincen - X is the cosine of the angkeindicated in Fig. 3.
We follow [13] and formally take the limit of vanishing thickness

lim kd = M,
d—0

K—00
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(V2y,) (%3, (112,5,)

FIG. 3. Geometry of dipole sheet element centereay,).

where the bounded limit represents here a tangential “impulse per unit length” as
sociated with the dipole sheet. We can proceed to perform the integration by makin
substitution of variables’ — x = (y, — y) tand wheref is the angle indicated in Fig. 3 to
determine

M _{I/Z—x} _{—I/Z—x”
x(X,y) = ————t —t e —
(. Y) JT(YO_Y){an Yo—Y an Yo—¥

M /2 —x —1/2—x }

— — . 22
* {(I/Z—X)2+(yo V? (=1/2=X)24+ (Yo — ¥)? 2)

The formula for a sheet centered &4,(y,) follows by substitutingc« — x, for x in (22).
The vertical component of velocity is to be determined in a similar fashion from

/2
Uy(X, y) = W I (x' — X){ X _1 : }dxl

X 21 J 12 X2 X —x—nd|2

kd 12 (X =x)n-%
=S EEER R gy
7 Joap X =X

Taking the thin sheet limit and equating X = (y, — y)/IX' — x|, we get

/2 ’r_
Uy(x, y) = M(yo Y) / X' =x) _dx’
172 [(X' = X)2 + (Yo — ¥)?]
_ M-y { 1 B 1 } (23)
2r (1/2=%%2+ Mo —Y)?2  (=1/2=%2+ (Yo— Y2}

It is proposed to represent the solution of (3) in terms of elements of tangential impu
density derived from partitioning a dipole sheet. We ascribe to this sheet an impulse
unit length of M = —u, - d with u, - sevaluated at the mid-point of the sheet of lenigth
An ensemble of such elements interacts according to Egs. (22) and (23).

5.3. Singularity. We have explicitly performed the Biot—Savart integration expresse
in Subsections 5.1 and 5.2. We note that whereas the strength afdm, sheets are
related to fields), andu,, respectively, the velocity fielthducedby these sheet objects is
not in any sense “equal” tay or u;. Rather, the induced fields have, in each case, a spati
structure with source-point singularity.

In the case o, from (18) the induced field componen} satisfies a condition of
regularity; uy on the other hand, from (19), admits logarithmic singularity at the enc
points &, +1/2, y,). This is most directly smoothed (see [15]) by introducing an additive
smoothing parametes;, into the denominator of the integrand of (17). This approach wil
serve our present purpose, although a more rigorous treatment of smoothing is avail
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for this m;; case (see [4]), which is achieved by convolving the integrand of (17) with
smoothing kernel [3]. The logarithmic edge singularity of (19) is a result of the partitionir
of the vortex sheet (an equivalent smooth contiguous sheet does not admit this singulal
This situation may be distinguished in character from the singularities arising in stand
blob methods in which the singular integrand of (17) is ameliorated, and hence made
subject of a numerical quadrature.

The doublet-shean,-elements we have introduced in subsection 5.2 also admit sing
larity in the fields they induce. Specifically, the functigrix) is discontinuous across the
sheet; therefore the normal derivatis¢ /9y (and henceiy) is singular on the sheet itself.
The normal velocity component, is singular at the point&x, & 1/2, yo).

The induced field in the case af; elements does not consist of a point singularity,
but rather a singularity oy = y,, for X — X,| < 1/2. Were we to convolve the relevant
Biot—Savart kernel with a smoothing function, we could reasonably require this function
contract, upon refinement, to a line rather than to a point. As imthease we shall take
the alternative approach of incorporating a smoothing parameter into the integrand of
Biot—Savart integral.

5.4. Integration in time. As time progresses, thin vortex and/or vortex-dipole sheel
are created at the beginning of each time step (the discretized increment of tieis
a solid boundary consistent with viscous boundary conditions. In either case the sh
are each partitioned into sheet-elements of uniform lehgthdl,, respectively. From the
dimensional considerations of Section 4, we expect typitakyl), .

After creation, these sheet elements diffuse from the wall over timeditépto the
flow interior; this viscous diffusion process is modeled here by imparting to each elemel
random walk displacement (of zero mean, and variad¢gRe) as it evolves. In subsequent
time-steps, the elements are also translated in the velocity field induced by the part
ensemble. Consider a planar wallat y,. In the case of vortex sheets the relevant velocit
field is determined by (18) and (19); in the case of vortex-dipole sheets, by (22) and (-
Adopting the approach to smoothing described in [15] (and specifying relevant smooth
parameters, e.gé; ~1,/2) we express the horizontal velocity field induced at a poin
X= (X, ¥) due to an ensemble Of vortex sheet elements of strengih} centered, at time
t, at positions¢; (t) = (x; (1), y; (1)),

N
Ut =3 kKX —x;(1).

=1

Theintegrated Biot—Savartkern&ls= (Ky, Ky) for the case of vortex sheets are deduce
from (18) and (19). Applied to each sheet in the ensemble, this leads to an evidhidngy
Lagrangian system of elements. The trajectory ofitheslement is approximated from a
numerical solution to the system of ordinary differential equations

1 N
BO S k@ %)
= (24)
Xi(0) = ai,

where, at timet, the locationX; = (X; (t), ¥ (t)) is determined by solving the system (24)
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using, for example, Runge—Kutta integration. The initial location of the element is the w
itself, i.e.,a; = (Xo, Yo) for somex, € [0, L], andy, =0.

A similar system (in terms of integrated kerné&lscan be developed for the case of an
ensemble oM vortex-dipole sheets (see Subsection 6.2).

As time progresses, the strength of an impulse sheet in the flow interior must evo
according to (3). The evolution of local Cartesian componenis in,) associated with a
particular element can be interpreted as an evolution in its streMdjlad a rotation about
its centroid. We express system (3) for vortex dipole sheets by the following “splitting
Euler advection is modeled as

D
—m; =0,
Dt
and viscous diffusion,
0 1
—m; = —Am,.
ot Re

To these are added the evolution of impulse strength implied by

3m| =—(Vu)'m,, (25)

ot
where this latter splitting bears analogy to a common treatment of vorticity stretching
three dimensions (discussed, for example, in [12]).

We will illustrate them;, decomposition by modeling flow past a circular cylinder. This
requires treatment of flow far from the wall, such as that flow associated with the wake.
expect vortex sheet elements to rotate in the stream of such interior flow. The interac
equations must be adapted accordingly. We attach to each sheet a direction cosine pair
(cosh;, sin6;) whered, is the angle théth sheet-normal makes with thxeaxis.

We hence adapt Eq. (24) to represent the field induced by an ensemble of genel
oriented vortex sheets of strengifag} so that

M
ue. ) =3 K RIK (R (X = X; (1))

j=1
with rotation operator given by

( sing, cos@i)
R = . (26)

—Cc0osf;, sing

6. BOUNDARY LAYER FLOW—CASE OF m

6.1. The limit of Blasius flow. We investigate numerically the case of boundary laye
flow over a flat semi-infinite plate to illustrate tme; decomposition. We could expect
a single element to induce a lateral component of velocity proportiongl (foom the
angle subtended by the sheet) divided by a vertical displacement. If we take t
displacement to be comparable to a viscous displacement weljmnfer O(2dt/Re.
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From this we deduce

I ~ o(Rie) 27)

Our approach will be to specify a partition of the wall consistent with (27).

6.2. The fieldu,. In the present case of flow in a half-space bounded by a flat plat
we do not require to determine explicitly the solution for the functjgprdiscussed in
Subsection 3.1. For flow induced by an ensemblelafortex sheet elements\(; } located
at points &;, y;) we write the discretized Biot—Savart law as

M
ue) =Y ML= X;(1)).
j

We can effect the conditiom - n =0 ondD by introducing an ensemble of images!; } at
the reflection pointsqj, —y;) with M = +M;. The required field is thus written explicitly
as

M
Ut = ML =X (1) + MjLx— X (1)
j=1

with x’j (t) = (xj (), —y; (1)) andx € 9D.

6.3. Numerical results. We consider the case of uniform incident fldlv=1 (started
impulsively att = 0) over a semi-infinite flat plate occupyiryg=0, x > 0. For a Reynolds
number ofRe= 200 we would expedt ~ 0.005. By way of making an initial illustration of
the computational domain, we chodse 0.005 with smoothing factor chosentode=1,/2
anddt =0.1. Figure 4 shows the distribution and sizemfelements in the neighborhood of
the leading edge after 50 steps have elapsed. One can see the development of aboundar
profile. To demonstrate that this developing regime tends, upon averaging over time,
self-similar Blasius profile, we choose four measurementlocations along the@lat6:25
(0); x2=0.5 (@); x3=0.75 (x); andxs = 1.00(+). This averaging of velocity at lateral
points is intended to reveal the degree of “self-similarity,” or otherwise, in the comput
velocity profiles (see [8, p. 129]; or [29, 4] for similar comparisons using standard vort
sheet methods). In Fig. 5 we plot the profile of averaged velocity at each lateral locat
as a function of boundary layer similarity variabje- y./R€/xn. At each time-step these
profiles are evaluated after the created sheets have been advected and diffused. The

0.4

0.3

>0.2

0.1

0 e

FIG. 4. Distribution of vortex dipole sheets from leading edge of a flat semi-infinite plate after 50 time-ste
have elapsed|(=0.005 dt=0.1, Re=200). Vertical dashed lines indicatelocations of velocity profiles.



42 D. M. SUMMERS

15 T T T T

<u>

Similarity variable (n)

FIG. 5. Mean horizontal velocity profiles after step 50 averaged over preceding 47 steps at the four lat
locations indicated in Fig. 4; dashed line is the Blasius profile.

associated with Figs. 4 and 5 starts impulsively &t0; since the averaging process over
the first three steps will be associated with impulsive transients, these steps are exclt
from the averaging.

The prescription of (27) suggests that Blasius flow should correspond to a choice of st
lengthl, of order I/Re This parameter can be varied; the “closeness” to Blasius profile (
anL? sense) can be examined for a choice of smoothing prescription. Figure 6a illustre
the result of choosing sheet lengths in the rangdg0.003 0.01], with §, =1,/2, and with
the average taken over 30 time-steps. We note a minimum in error in the neighborhood o

a 0.03 T T T

I uy— u
(o]
<

6=1/2

ol— . .
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Element length ( 11)

, i
I

1—8=1/2 [=0.005 ]
1
I

0 . 1 . . .
0.25 0.50 0.75 1.00 1.25
Smoothing parameter (6]/1 I)

FIG. 6. (a) L2 error norm expressing fit to Blasius profile of the aggregated four velocity profiles at later
locations indicated in Fig. 4 as a function of sheet ledgtlith smoothing parametess=1/2; (b) L2 error norm
for | =0.005 as a function of smoothing parametgi,.
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FIG. 7. Downstream distribution of vortex dipole sheets at two levels of spatial refinemeht=&)003;
and (b)l} =0.012.

prescription (27). Figure 6b illustrates how error varies with smoothing parameter, for fix
sheet lengthl(=0.005.

If we observe the distribution of dipole elements at increasing distance downstream,
velocity profiles become increasingly less self-similar. Downstream sections seemto ach
a stable quasi-uniform boundary layer thickness as time advances. Figure 7 illustr
the downstream distribution for € [2, 4] for two choices of sheet length:=0.003 and
I, =0.012. These choices correspond to parameters falling above or below the prescrif
defined by (27). In Fig. 7a we halie< 1/Reand diffusion is expected to predominate over
advection; in Fig. 7b we have> 1/Reand advection dominates. By construction, the scal
of the parametdy expresses the spatial scale of impulse imparted to the flow; the evider
of Fig. 7 suggests that it also influences the scale of lateral structures which develop ir
boundary layer.

7. FLOW PAST A CIRCULAR CYLINDER—CASE OF m

7.1. Preliminary remarks. We investigate now the vorticity generation associated witl
flow past a bluff body related to tha,, decomposition in isolation.

We consider a circular cylinde#3, of unit radius centered at (0, 0). At tinhe= 0 a unit
flow in the positivex-direction impinges on the body; unperturbed this flowis- (1, 0).
At t =0 (with no previously generated impulse or vorticity in the flow interior) the fielc
U, = (Uy, Vi) can be determined consistent with condition (13) and with the uniforr
inlet/outlet condition of the free-stream. We have

X2 — 2
U =1+ 2 (28)
and
2xy
Vi = 3 (29)

Hence we can infer from (12) a normally oriented wall impulse associated with this fr
stream given byn,'; -f=—(Uy, Vi) - f, with f the unit radial vector.
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7.2. Thefieldy,. Inthe case of then;, decomposition we need to determine a fiald
consistent with condition (13) at each time-step.

One way to proceed is to express a perturbation velocity potetdtfal,in terms of a
single-layer potential function so that

wP(r) = —i/ o(ro) Infr —roldl(ro),
2 B

whereo (1) is a source distribution function at a pomton the cylinde 3. From this we
determine an perturbation velocity field, generally as

1
uf = vieP = ——/ a(re)VEIn|r —roldl(ry), (30)
27T OB

where Vvt = (—d/dy, 3/3x). We identify u] as the perturbation which, when added to
the velocity associated with the field induced by the distribution of impulgg dchieves
condition (13) ordB. This is to say we write

U =Un+ Uﬁ (31)

with uy - s=0 ondB. This leads to the integral equation developed by Martensen [21]

o(r) 1

7 = _(V — _ _ -2 _ .
5 +27T]£Ba(r0)[ (Y = Yo)Sx + (X — Xo) Sy]Ir — To|“dl(ro) = Uy - S (32)

to be solved for at each point € 33, with s= (sy, sy) representing the local unit tangent
vector atr. This problem we can discretize, for example, using a constant-panebRystr’
approach. Having solved fer we deduceuf} everywhere in the fluid through a quadrature
version of (30). Finally we determine the field,, from (31).

7.3. Creation and translation of vortex sheet#t pointsx = (X, y) on the cylinder, and
at each time step, we require to determine the strength of the vortex sheet to be created
in order to establish impermeability. This strength derives from the lateral gradient of t
normal component of velocity singe=—&d = d(uy, - n)/ds d, whered is a vertical length
scale which we may take to be some multiple,df/Re

We partition the circlé) B into panels each of length. At each time step the vorticity
£ is evaluated at the centroid of each panel using a difference approximation for the lat
velocity gradient. We will take the partition paramefigto be proportional to the viscous
scale length—consistent with the discussion in Subsection 4.1. It is therefore to be sci
in inverse proportion to the square root of Reynolds number]i.e:1/vRe

At t =0 a unit flow in the positivex-direction is incident on a unit circular cylinder
centered at the origin (0, 0). As time progresses, thin vortex sheets are created at each
step on the cylinder’s surface consistent with viscous boundary conditions. Apart from
distinct creation criteria, we have at this stage something which resembles a standard vc
method.

For flow induced by an ensemble Nfvortex sheet elements; }, we can express the ve-
locity as a Biot—Savartintegral which takes a discretized form as described in Subsection
Since we require the field induced at a poixt ¥) by an ensemblé«;} located at points
(X, ¥j) in the flow interior to satisfyi - n =0 atd 3, we introduce a system of imaggs }
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of strengthcj = —«; at inverse points = (r; cosgj, rj singj) inside the cylinder, where
B; = tan (y;/x;) andr? =x? + y?. In addition to these, to enforce irrotationality of the
image field, an additional image is introduced at the center of the cylinder with stren

7.4. Numerical results. We illustrate the computation for the present case by pursuin
the following numerical parameterization. We make a choice of time-step intdtyalhich
is guided by the discussion in Section 2.4 of [24]. The free-stream veldaitgn be varied
relative to the dimensions of the cylinder in such a way that the produgtasfddt is kept
constant. We also keep the paramd&ee=Ur /v constant.

The fixed radius of the unit cylinder is= 1. The cylinder surface is partitioned into 75
panels of length2/75, corresponding to the intended sheet element length. Since a Pois
equation is to be solved over this surface, a second more refined partition is constructe
this purpose, with 500 nodes.

By way of demonstration we consider the flow illustrated in plate 94 in Van Dyke [11
this represents a free-stream of 1.4 cm/s flowing past a cylinder of radius 0.5 cm;
Reynolds number is 140. We reflect this proportion between cylinder radius and fr
stream velocity by the following model: we chodde=3,r =1, Re=140. We determine
Iy =27 /75~ 1/+/Re From the CFL condition we infeitt = 0.02819. The smoothing pa-
rameter is chosen to lde=1,, /4.

The flow is started impulsively at=0. At the initial time-step the free-stream field
components described in Subsection 7.1, natdgly (Uy, V), are calculated at the nodes
of the refined partition; from this the radial componmﬂt- f is inferred at each nodal point.
Hence the lateral derivati\zia(mlfI -f)/dsis calculated, witts the arc-length variable, taken
positively in the direction of increasing angk) (measured from the positive axis (i.e.,
from the downstream stagnation). This differentiation is achieved using center-differenc
From this a vortex sheet strengths calculated.

Figure 8 illustrates the instantaneous distribution of sheet locations at 30-step inter
after impulsive start-up. At step 90 there are some 3200 elements represented in the

a 3
2 Step 10
1 O
£
> 0 @ e e e e e e e e e - ==
-1t
2
-3
[o] 3
Step 60
-3
0 5 10 0 5 10

FIG. 8. Evolution from impulsive start-up of flow past a cylinder.
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| _ K =d 8(mH~n)/as:

0 /2 n 3n/2 2n

FIG.9. Function distributions over the cylinder surface at step 90. (a) The right hand side to the integral eq
tion (32); (b) normal component of field deduced from (32); (c) free-stream contribution defined in Subsection
(d) sheet strength (with d = 0.25/+/ Re).

The open circles represent elements whose sense is positive (i.e., induce a velocity w
rotates counter clockwise). The filled circles indicate a negative sense. We note the struc
of the wake begins to develop asymmetry at this step, and downstream oscillatory instab
forms.

Figure 9 illustrates distributions (over the surface of the cylinder) of various functiol
which are relevant to the present calculation. These are plotted for the 90th time-ste|
a function of9, the angle taken from the downstream stagnation. Figure 9a illustrates
distribution of tangential velocity induced by dipole elements (in the flow interior) create
previously to the 90th time-step. This is namaly - s, whereuy, is the variable appearing
on the right-hand side of the integral equation (32) and is the velocity field indude#l in
introduced in Subsection 3.2. (The downward arrow in Fig. 9a indicates the location
upstream stagnation on the cylinder, i#= .) Figure 9b illustrates the distribution of
the fieldu;, determined from (31); this is a field normal &. Figure 9c illustrates the
component of the free-stream fidllj, tangential ta® B; this is determined from (28) and
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(29). The distribution of sheet-strength to be createédzat the 90th time-step is illustrated
in Fig. 9d. This is calculated from the lateral gradient (approximated by center-differenc
ofmy -n=—Uy; +uy) -n.

Figures 10 and 11 illustrate the subsequent evolution of elements over 400 time-ste|

a 6 T T T T T
4 - .
Step 100
Step 200
Step 300 1
2I0 25

FIG. 10. Evolution of flow past a cylindeRe= 140,dt=0.02819,U = 3.0. Steps 100, 200, and 300.
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8 T T T T T

Step 400 .

FIG. 11. Evolution of flow past a cylinder, step 400.

8. CONCLUSIONS

We have introduced two particular choices of the func#i@mEq. (2) which are consistent
with wall impulse oriented in two orthogonal directions, normal and parallel to the wa
respectively. Each case can be related to the creation of impulse at the wall to effect
velocity boundary condition. Taking wall impulse densityto be normal to the wall is
associated with the creation of vortex sheets; taking it to be parallel to the wall is associe
with the creation of vortex dipole sheets. The two creation processes can, in principle.
superposed.

There has been experimental, numerical, and theoretical evidence to suggest that
structures in wakes and in separating shear layers are somehow related to a combinati
“single-sign vorticity” and “double-layer vortices” (roughly cast into present nomenclatur
monopole sheets, and dipole sheets). See, for example, [1], or [16]. In an analysis of E
flow, Moffatt [22] identifies the existence of two kinds of tangential discontinuity: that o
velocity (vortex sheets) and that of vorticity (which in our language implies dipole sheet
The decompositions we propose provide a rationale for the creation of such objects
wall based on the equation of motion and its associated wall boundary condition.

Our object here has been to introduce the idea of such decomposition and to illust
this with numerical experiment. Our illustrations are constrained by obvious simplifyir
assumptions: for example, we use smoothing strategies which, while commonly invoked
vortex sheets [15, 1] nevertheless are not accompanied by a rigorous convergence th
Also we do not express numerically the deformation and rotatiom,oélements in the
present exercise.

Viewed as a method of “vorticity-creation,” the decompositions presented here m
seem counter-intuitive. Intuition in this matter is informed by the insights of Chorin [7]
Lighthill [19]—and originally Rosenhead [25] and Stokes (see [32, letter, Sect. 643])—wi
in various contexts consider surfaces of discontinuity in the flow as vortex sheets. A sc
wall constitutes such a surface of discontinuity so it is plausible to associate a vortex si
with a finite “slip” in velocity there. Consistent with this plausibility argument, the creatio!
of single-layer (i.e., monopole) vortex sheets at a wall would be associated specifically v
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the no-slip condition. However, a more complicated picture emerges from present impt
considerations. Vortedipole sheets are created specifically to effect no-slip (that is t
saym, creation is associated with tangential impulse at the wall). Impulsive forces whi
develop normal to the wall determine the creatiompfelements, these being equivalent,
via their gradients, to the creation mionopolevortex sheets.

Them, decomposition has an antecedence in the Lagrangian model of flow develo
by Lord Kelvin (see [14]). Kelvin considers a stationary solid body immersed in a movir
inviscid fluid (specifically in a velocity field with harmonic potential, equivalent to ou
irrotationalu, fields). The pressure exerted by the fluid normal to the surface of the bo
integrated over an interval of time, is equated (with sign reversal) to the equilibriati
impulse imparted to the fluid by the body. Theg case can be seen as a complement t
Kelvin's original model, one which generalizes it to include the tangential forces whi
preoccupied Stokes [28]. Fon,-decomposition one conceives of a viscous shear stre
tangential to the solid boundary. Integrated over a small interval of time, this is identifi
as that impulse imparted to the fluid by the action of wall friction.

There exists a three-dimensional analogue of the present impulse representation
cussed elsewhere—see [30]) which leads to the creation of elements which respec
solenoidality condition for vorticity. The creation principle does not, in itself, advance t
global circulation of the flow.

The decomposition we describe would seem to be simple, reflecting the fact that it |
natural consequence of the Hodge decomposition (2). Yet there are promising indicat
that this simple decomposition may provide a basis for a dynamically complete Lagranc
representation of bounded viscous flow.
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